Image
resize_image
paz.backend.image.opencv_image.resize_image(image, size, method=1)
Resize image.
Arguments
- image: Numpy array.
- size: List of two ints.
- method: Flag indicating interpolation method i.e. paz.backend.image.CUBIC
Returns
Numpy array.
convert_color_space
paz.backend.image.opencv_image.convert_color_space(image, flag)
Convert image to a different color space.
Arguments
- image: Numpy array.
- flag: PAZ or openCV flag. e.g. paz.backend.image.RGB2BGR.
Returns
Numpy array.
load_image
paz.backend.image.opencv_image.load_image(filepath, num_channels=3)
Load image from a ''filepath''.
Arguments
- filepath: String indicating full path to the image.
- num_channels: Int.
Returns
Numpy array.
show_image
paz.backend.image.opencv_image.show_image(image, name='image', wait=True)
Shows RGB image in an external window.
Arguments
- image: Numpy array
- name: String indicating the window name.
- wait: Boolean. If ''True'' window stays open until user presses a key. If ''False'' windows closes immediately.
warp_affine
paz.backend.image.opencv_image.warp_affine(image, matrix, fill_color=[0, 0, 0], size=None)
Transforms image
using an affine matrix
transformation.
Arguments
- image: Numpy array.
- matrix: Numpy array of shape (2,3) indicating affine transformation.
- fill_color: List/tuple representing BGR use for filling empty space.
write_image
paz.backend.image.opencv_image.write_image(filepath, image)
Writes an image inside filepath
. If filepath
doesn't exist
it makes a directory. If image
has three channels the image is
converted into BGR and then written. This is done such that this
function compatible with load_image
.
Arguments
- filepath: String with image path. It should include postfix e.g. .png
- image: Numpy array.
gaussian_image_blur
paz.backend.image.opencv_image.gaussian_image_blur(image, kernel_size=(5, 5))
Applies Gaussian blur to an image.
Arguments
- image: Numpy array of shape ''(H, W, 4)''.
- kernel_size: List of two ints e.g. ''(5, 5)''.
Returns
Numpy array
median_image_blur
paz.backend.image.opencv_image.median_image_blur(image, apperture=5)
Applies median blur to an image.
Arguments
- image: Numpy array of shape ''(H, W, 3)''.
apperture. Int.
Returns
Numpy array.
get_rotation_matrix
paz.backend.image.opencv_image.get_rotation_matrix(center, degrees, scale=1.0)
Returns a 2D rotation matrix.
Arguments
- center: List of two integer values.
- degrees: Float indicating the angle in degrees.
Returns
Numpy array
cast_image
paz.backend.image.image.cast_image(image, dtype)
Casts an image into a different type
Arguments
- image: Numpy array.
- dtype: String or np.dtype.
Returns
Numpy array.
random_saturation
paz.backend.image.image.random_saturation(image, lower=0.3, upper=1.5)
Applies random saturation to an RGB image.
Arguments
- image: Numpy array representing an image RGB format.
- lower: Float.
- upper: Float.
random_brightness
paz.backend.image.image.random_brightness(image, delta=32)
Applies random brightness to an RGB image.
Arguments
- image: Numpy array representing an image RGB format.
- delta: Int.
random_contrast
paz.backend.image.image.random_contrast(image, lower=0.5, upper=1.5)
Applies random contrast to an RGB image.
Arguments
- image: Numpy array representing an image RGB format.
- lower: Float.
- upper: Float.
random_hue
paz.backend.image.image.random_hue(image, delta=18)
Applies random hue to an RGB image.
Arguments
- image: Numpy array representing an image RGB format.
- delta: Int.
flip_left_right
paz.backend.image.image.flip_left_right(image)
Flips an image left and right.
Arguments
- image: Numpy array.
random_flip_left_right
paz.backend.image.image.random_flip_left_right(image)
Applies random left or right flip.
Arguments
- image: Numpy array.
crop_image
paz.backend.image.image.crop_image(image, crop_box)
Resize image.
Arguments
- image: Numpy array.
- crop_box: List of four ints.
Returns
Numpy array.
image_to_normalized_device_coordinates
paz.backend.image.image.image_to_normalized_device_coordinates(image)
Map image value from [0, 255] -> [-1, 1].
normalized_device_coordinates_to_image
paz.backend.image.image.normalized_device_coordinates_to_image(image)
Map normalized value from [-1, 1] -> [0, 255].
random_shape_crop
paz.backend.image.image.random_shape_crop(image, shape)
Randomly crops an image of the given shape
.
Arguments
- image: Numpy array.
- shape: List of two ints ''(H, W)''.
Returns
Numpy array of cropped image.
make_random_plain_image
paz.backend.image.image.make_random_plain_image(shape)
Makes random plain image by sampling three random values.
Arguments
- shape: Image shape e.g. ''(H, W, 3)''.
Returns
Numpy array of shape ''(H, W, 3)''.
blend_alpha_channel
paz.backend.image.image.blend_alpha_channel(image, background)
Blends image with background using an alpha channel.
Arguments
- image: Numpy array with alpha channel. Shape must be ''(H, W, 4)''
- background: Numpy array of shape ''(H, W, 3)''.
concatenate_alpha_mask
paz.backend.image.image.concatenate_alpha_mask(image, alpha_mask)
Concatenates alpha mask to image.
Arguments
- image: Numpy array of shape ''(H, W, 3)''.
- alpha_mask: Numpy array array of shape ''(H, W)''.
Returns
Numpy array of shape ''(H, W, 4)''.
split_and_normalize_alpha_channel
paz.backend.image.image.split_and_normalize_alpha_channel(image)
Splits alpha channel from an RGBA image and normalizes alpha channel.
Arguments
- image: Numpy array of shape ''(H, W, 4)''.
Returns
List of two numpy arrays containing respectively the image and the alpha channel.
random_image_blur
paz.backend.image.image.random_image_blur(image)
Applies random choice blur.
Arguments
- image: Numpy array of shape ''(H, W, 3)''.
Returns
Numpy array.
translate_image
paz.backend.image.image.translate_image(image, translation, fill_color)
Translate image.
Arguments
- image: Numpy array.
- translation: A list of length two indicating the x,y translation values
- fill_color: List of three floats representing a color.
Returns
Numpy array
sample_scaled_translation
paz.backend.image.image.sample_scaled_translation(delta_scale, image_shape)
Samples a scaled translation from a uniform distribution.
Arguments
- delta_scale: List with two elements having the normalized deltas. e.g. ''[.25, .25]''.
- image_shape: List containing the height and width of the image.
replace_lower_than_threshold
paz.backend.image.image.replace_lower_than_threshold(source, threshold=0.001, replacement=0.0)
Replace values from source that are lower than the given threshold. This function doesn't create a new array but does replacement in place.
Arguments
- source: Array.
- threshold: Float. Values lower than this value will be replaced.
- replacement: Float. Value taken by elements lower than threshold.
Returns
Array of same shape as source.
normalize_min_max
paz.backend.image.image.normalize_min_max(x, x_min, x_max)
Normalized data using it's maximum and minimum values
Arguments
- x: array
- x_min: minimum value of x
- x_max: maximum value of x
Returns
min-max normalized data
sample_scaled_translation
paz.backend.image.image.sample_scaled_translation(delta_scale, image_shape)
Samples a scaled translation from a uniform distribution.
Arguments
- delta_scale: List with two elements having the normalized deltas. e.g. ''[.25, .25]''.
- image_shape: List containing the height and width of the image.
get_rotation_matrix
paz.backend.image.opencv_image.get_rotation_matrix(center, degrees, scale=1.0)
Returns a 2D rotation matrix.
Arguments
- center: List of two integer values.
- degrees: Float indicating the angle in degrees.
Returns
Numpy array
calculate_image_center
paz.backend.image.image.calculate_image_center(image)
Return image center.
Arguments
- image: Numpy array.
Returns
image center.
get_affine_transform
paz.backend.image.opencv_image.get_affine_transform(source_points, destination_points)
Return the transformation matrix.
Arguments
- source_points: Numpy array.
- destination_points: Numpy array.
Returns
Transformation matrix.
get_scaling_factor
paz.backend.image.image.get_scaling_factor(image, scale=1, shape=(128, 128))
Return scaling factor for the image.
Arguments
- image: Numpy array.
- scale: Int.
- shape: Tuple of integers. eg. (128, 128)
Returns
scaling factor: Numpy array of size 2
scale_resize
paz.backend.image.image.scale_resize(image, image_size)
Resizes and crops image by returning the scales to original image.
Args: image: Numpy array, raw image. image_size: Int, size of the image.
Returns: Tuple: output_image, image_scale.
compute_resizing_shape
paz.backend.image.image.compute_resizing_shape(image, size)
Computes the final size of the image to be scaled by size
such that the largest dimension of the image is equal to size
.
Arguments
- image: Array, raw image to be scaled.
- size: Int, final size of the image.
Returns
- List: Containing final shape of image and scale.
pad_image
paz.backend.image.image.pad_image(image, size, mode)
Pads the image to the final size size
.
Arguments
- image: Array, image to be padded.
- size: Int, final size of the image.
- mode: Str, specifying the type of padding.
Returns
- Array: Padded image.
equalize_histogram
paz.backend.image.image.equalize_histogram(image)
Performs histogram equalization on a given image.
Arguments
- image: Array, raw image.
Returns:
- equalized: Array, histogram equalized image.
invert_colors
paz.backend.image.image.invert_colors(image)
Performs color / gray value inversion on a given image.
Arguments
- image: Array, raw image.
Returns:
- Array: Color inverted image.
posterize
paz.backend.image.image.posterize(image, num_bits)
Performs posterization on a given image. This is achieved by reducing the bit depth of the gray value.
Arguments
- image: Array, raw image.
- num_bits: Int, final bit depth after posterization.
Returns:
- Array: Posterized image.
solarize
paz.backend.image.image.solarize(image, threshold)
Performs solarization on a given image. This is achieved
by inverting those pixels whose gray values lie above
a certain threshold
.
Arguments
- probability: Float, probability of data transformation.
- threshold: Int, threshold value.
Returns:
- Array: Solarized image.
cutout
paz.backend.image.image.cutout(image, size, fill)
Cuts out a square of size size
x size
at a random location
in the image
and fills it with fill
value.
Arguments
- image: Array, raw image.
- size: Int, size of cutout square.
- fill: Int, value to fill cutout with.
Returns:
- image: Array, cutout image.
add_gaussian_noise
paz.backend.image.image.add_gaussian_noise(image, mean, sigma)
Adds Gaussian noise defined by mean
and scale
to the image
.
Arguments
- image: Array, raw image.
- mean: Int, mean of Gaussian noise.
- sigma: Float, standard deviation of Gaussian noise.
Returns:
- Array: Image added with Gaussian noise.