Detection
Models for 2D object detection
SSD300
paz.models.detection.ssd300.SSD300(num_classes=21, base_weights='VOC', head_weights='VOC', input_shape=(300, 300, 3), num_priors=[4, 6, 6, 6, 4, 4], l2_loss=0.0005, return_base=False, trainable_base=True)
Single-shot-multibox detector for 300x300x3 BGR input images. Arguments
- num_classes: Integer. Specifies the number of class labels.
- base_weights: String or None. If string should be a valid dataset name.
Current valid datasets include
VOC
FAT
andVGG
. - head_weights: String or None. If string should be a valid dataset name.
Current valid datasets include
VOC
andFAT
. - input_shape: List of integers. Input shape to the model including only spatial and channel resolution e.g. (300, 300, 3).
- num_priors: List of integers. Number of default box shapes used in each detection layer.
- l2_loss: Float. l2 regularization loss for convolutional layers.
- return_base: Boolean. If
True
the model returned is just the original base. - trainable_base: Boolean. If
True
the base model weights are also trained.
Reference
SSD512
paz.models.detection.ssd512.SSD512(num_classes=81, base_weights='COCO', head_weights='COCO', input_shape=(512, 512, 3), num_priors=[4, 6, 6, 6, 6, 4, 4], l2_loss=0.0005, return_base=False, trainable_base=True)
Single-shot-multibox detector for 512x512x3 BGR input images. Arguments
- num_classes: Integer. Specifies the number of class labels.
- base_weights: String or None. If string should be a valid dataset name.
Current valid datasets include
COCO
andOIV6Hand
. - head_weights: String or None. If string should be a valid dataset name.
Current valid datasets include
COCO
,YCBVideo
andOIV6Hand
. - input_shape: List of integers. Input shape to the model including only spatial and channel resolution e.g. (512, 512, 3).
- num_priors: List of integers. Number of default box shapes used in each detection layer.
- l2_loss: Float. l2 regularization loss for convolutional layers.
- return_base: Boolean. If
True
the model returned is just the original base. - trainable_base: Boolean. If
True
the base model weights are also trained.
Reference
HaarCascadeDetector
paz.models.detection.haar_cascade.HaarCascadeDetector(self, weights='frontalface_default', class_arg=None, scale=1.3, neighbors=5)
Haar cascade face detector.
Arguments
- path: String. Postfix to default openCV haarcascades XML files, see [1]
e.g.
eye
,frontalface_alt2
,fullbody
- class_arg: Int. Class label argument.
scale = Float. Scale for image reduction
- neighbors: Int. Minimum neighbors
Reference
EFFICIENTDETD0
paz.models.detection.efficientdet.efficientdet.EFFICIENTDETD0(num_classes=90, base_weights='COCO', head_weights='COCO', input_shape=(512, 512, 3), FPN_num_filters=64, FPN_cell_repeats=3, box_class_repeats=3, anchor_scale=4.0, fusion='fast', return_base=False, model_name='efficientdet-d0', scaling_coefficients=(1.0, 1.0, 0.8))
Instantiates EfficientDet-D0 model.
Arguments
- num_classes: Int, number of object classes.
- base_weights: Str, base weights name.
- head_weights: Str, head weights name.
- input_shape: Tuple, holding input image size.
- FPN_num_filters: Int, number of FPN filters.
- FPN_cell_repeats: Int, number of FPN blocks.
- box_class_repeats: Int, Number of regression and classification blocks.
- anchor_scale: Int, number of anchor scales.
- fusion: Str, feature fusion weighting method.
- return_base: Bool, whether to return base or not.
- model_name: Str, EfficientDet model name.
- scaling_coefficients: Tuple, EfficientNet scaling coefficients.
Returns
- model: EfficientDet-D0 model.
EFFICIENTDETD1
paz.models.detection.efficientdet.efficientdet.EFFICIENTDETD1(num_classes=90, base_weights='COCO', head_weights='COCO', input_shape=(640, 640, 3), FPN_num_filters=88, FPN_cell_repeats=4, box_class_repeats=3, anchor_scale=4.0, fusion='fast', return_base=False, model_name='efficientdet-d1', scaling_coefficients=(1.0, 1.1, 0.8))
Instantiates EfficientDet-D1 model.
Arguments
- num_classes: Int, number of object classes.
- base_weights: Str, base weights name.
- head_weights: Str, head weights name.
- input_shape: Tuple, holding input image size.
- FPN_num_filters: Int, number of FPN filters.
- FPN_cell_repeats: Int, number of FPN blocks.
- box_class_repeats: Int, Number of regression and classification blocks.
- anchor_scale: Int, number of anchor scales.
- fusion: Str, feature fusion weighting method.
- return_base: Bool, whether to return base or not.
- model_name: Str, EfficientDet model name.
- scaling_coefficients: Tuple, EfficientNet scaling coefficients.
Returns
- model: EfficientDet-D1 model.
EFFICIENTDETD2
paz.models.detection.efficientdet.efficientdet.EFFICIENTDETD2(num_classes=90, base_weights='COCO', head_weights='COCO', input_shape=(768, 768, 3), FPN_num_filters=112, FPN_cell_repeats=5, box_class_repeats=3, anchor_scale=4.0, fusion='fast', return_base=False, model_name='efficientdet-d2', scaling_coefficients=(1.1, 1.2, 0.7))
Instantiate EfficientDet-D2 model.
Arguments
- num_classes: Int, number of object classes.
- base_weights: Str, base weights name.
- head_weights: Str, head weights name.
- input_shape: Tuple, holding input image size.
- FPN_num_filters: Int, number of FPN filters.
- FPN_cell_repeats: Int, number of FPN blocks.
- box_class_repeats: Int, Number of regression and classification blocks.
- anchor_scale: Int, number of anchor scales.
- fusion: Str, feature fusion weighting method.
- return_base: Bool, whether to return base or not.
- model_name: Str, EfficientDet model name.
- scaling_coefficients: Tuple, EfficientNet scaling coefficients.
Returns
- model: EfficientDet-D2 model.
EFFICIENTDETD3
paz.models.detection.efficientdet.efficientdet.EFFICIENTDETD3(num_classes=90, base_weights='COCO', head_weights='COCO', input_shape=(896, 896, 3), FPN_num_filters=160, FPN_cell_repeats=6, box_class_repeats=4, anchor_scale=4.0, fusion='fast', return_base=False, model_name='efficientdet-d3', scaling_coefficients=(1.2, 1.4, 0.7))
Instantiates EfficientDet-D3 model.
Arguments
- num_classes: Int, number of object classes.
- base_weights: Str, base weights name.
- head_weights: Str, head weights name.
- input_shape: Tuple, holding input image size.
- FPN_num_filters: Int, number of FPN filters.
- FPN_cell_repeats: Int, number of FPN blocks.
- box_class_repeats: Int, Number of regression and classification blocks.
- anchor_scale: Int, number of anchor scales.
- fusion: Str, feature fusion weighting method.
- return_base: Bool, whether to return base or not.
- model_name: Str, EfficientDet model name.
- scaling_coefficients: Tuple, EfficientNet scaling coefficients.
Returns
- model: EfficientDet-D3 model.
EFFICIENTDETD4
paz.models.detection.efficientdet.efficientdet.EFFICIENTDETD4(num_classes=90, base_weights='COCO', head_weights='COCO', input_shape=(1024, 1024, 3), FPN_num_filters=224, FPN_cell_repeats=7, box_class_repeats=4, anchor_scale=4.0, fusion='fast', return_base=False, model_name='efficientdet-d4', scaling_coefficients=(1.4, 1.8, 0.6))
Instantiates EfficientDet-D4 model.
Arguments
- num_classes: Int, number of object classes.
- base_weights: Str, base weights name.
- head_weights: Str, head weights name.
- input_shape: Tuple, holding input image size.
- FPN_num_filters: Int, number of FPN filters.
- FPN_cell_repeats: Int, number of FPN blocks.
- box_class_repeats: Int, Number of regression and classification blocks.
- anchor_scale: Int, number of anchor scales.
- fusion: Str, feature fusion weighting method.
- return_base: Bool, whether to return base or not.
- model_name: Str, EfficientDet model name.
- scaling_coefficients: Tuple, EfficientNet scaling coefficients.
Returns
- model: EfficientDet-D4 model.
EFFICIENTDETD5
paz.models.detection.efficientdet.efficientdet.EFFICIENTDETD5(num_classes=90, base_weights='COCO', head_weights='COCO', input_shape=(1280, 1280, 3), FPN_num_filters=288, FPN_cell_repeats=7, box_class_repeats=4, anchor_scale=4.0, fusion='fast', return_base=False, model_name='efficientdet-d5', scaling_coefficients=(1.6, 2.2, 0.6))
Instantiates EfficientDet-D5 model.
Arguments
- num_classes: Int, number of object classes.
- base_weights: Str, base weights name.
- head_weights: Str, head weights name.
- input_shape: Tuple, holding input image size.
- FPN_num_filters: Int, number of FPN filters.
- FPN_cell_repeats: Int, number of FPN blocks.
- box_class_repeats: Int, Number of regression and classification blocks.
- anchor_scale: Int, number of anchor scales.
- fusion: Str, feature fusion weighting method.
- return_base: Bool, whether to return base or not.
- model_name: Str, EfficientDet model name.
- scaling_coefficients: Tuple, EfficientNet scaling coefficients.
Returns
- model: EfficientDet-D5 model.
EFFICIENTDETD6
paz.models.detection.efficientdet.efficientdet.EFFICIENTDETD6(num_classes=90, base_weights='COCO', head_weights='COCO', input_shape=(1280, 1280, 3), FPN_num_filters=384, FPN_cell_repeats=8, box_class_repeats=5, anchor_scale=5.0, fusion='sum', return_base=False, model_name='efficientdet-d6', scaling_coefficients=(1.8, 2.6, 0.5))
Instantiates EfficientDet-D6 model.
Arguments
- num_classes: Int, number of object classes.
- base_weights: Str, base weights name.
- head_weights: Str, head weights name.
- input_shape: Tuple, holding input image size.
- FPN_num_filters: Int, number of FPN filters.
- FPN_cell_repeats: Int, number of FPN blocks.
- box_class_repeats: Int, Number of regression and classification blocks.
- anchor_scale: Int, number of anchor scales.
- fusion: Str, feature fusion weighting method.
- return_base: Bool, whether to return base or not.
- model_name: Str, EfficientDet model name.
- scaling_coefficients: Tuple, EfficientNet scaling coefficients.
Returns
- model: EfficientDet-D6 model.
EFFICIENTDETD7
paz.models.detection.efficientdet.efficientdet.EFFICIENTDETD7(num_classes=90, base_weights='COCO', head_weights='COCO', input_shape=(1536, 1536, 3), FPN_num_filters=384, FPN_cell_repeats=8, box_class_repeats=5, anchor_scale=5.0, fusion='sum', return_base=False, model_name='efficientdet-d7', scaling_coefficients=(1.8, 2.6, 0.5))
Instantiates EfficientDet-D7 model.
Arguments
- num_classes: Int, number of object classes.
- base_weights: Str, base weights name.
- head_weights: Str, head weights name.
- input_shape: Tuple, holding input image size.
- FPN_num_filters: Int, number of FPN filters.
- FPN_cell_repeats: Int, number of FPN blocks.
- box_class_repeats: Int, Number of regression and classification blocks.
- anchor_scale: Int, number of anchor scales.
- fusion: Str, feature fusion weighting method.
- return_base: Bool, whether to return base or not.
- model_name: Str, EfficientDet model name.
- scaling_coefficients: Tuple, EfficientNet scaling coefficients.
Returns
- model: EfficientDet-D7 model.