Detection
Processors for object detection
SquareBoxes2D
paz.processors.detection.SquareBoxes2D()
Transforms bounding rectangular boxes into square bounding boxes.
DenormalizeBoxes2D
paz.processors.detection.DenormalizeBoxes2D()
Denormalizes boxes shapes to be in accordance to the original image size.
Arguments:
- image_size: List containing height and width of an image.
RoundBoxes2D
paz.processors.detection.RoundBoxes2D()
Round to integer box coordinates.
ClipBoxes2D
paz.processors.detection.ClipBoxes2D()
Clips boxes coordinates into the image dimensions
FilterClassBoxes2D
paz.processors.detection.FilterClassBoxes2D(valid_class_names)
Filters boxes with valid class names.
Arguments
- valid_class_names: List of strings indicating class names to be kept.
CropBoxes2D
paz.processors.detection.CropBoxes2D()
Creates a list of images cropped from the bounding boxes.
Arguments
- offset_scales: List of floats having x and y scales respectively.
ToBoxes2D
paz.processors.detection.ToBoxes2D(class_names=None, one_hot_encoded=False, default_score=1.0, default_class=None, box_method=0)
Transforms boxes from dataset into Boxes2D
messages.
Arguments
- class_names: List of class names ordered with respect to the
class indices from the dataset
boxes
. - one_hot_encoded: Bool, indicating if scores are one hot vectors.
- default_score: Float, score to set.
- default_class: Str, class to set.
- box_method: Int, method to convert boxes to
Boxes2D
.
Properties
- one_hot_encoded: Bool.
- box_processor: Callable.
Methods
call()
MatchBoxes
paz.processors.detection.MatchBoxes(prior_boxes, iou=0.5)
Match prior boxes with ground truth boxes.
Arguments
- prior_boxes: Numpy array of shape (num_boxes, 4).
- iou: Float in [0, 1]. Intersection over union in which prior boxes
will be considered positive. A positive box is box with a class
different than
background
. - variance: List of two floats.
EncodeBoxes
paz.processors.detection.EncodeBoxes(prior_boxes, variances=[0.1, 0.1, 0.2, 0.2])
Encodes bounding boxes.
Arguments
- prior_boxes: Numpy array of shape (num_boxes, 4).
- variances: List of two float values.
DecodeBoxes
paz.processors.detection.DecodeBoxes(prior_boxes, variances=[0.1, 0.1, 0.2, 0.2])
Decodes bounding boxes.
Arguments
- prior_boxes: Numpy array of shape (num_boxes, 4).
- variances: List of two float values.
NonMaximumSuppressionPerClass
paz.processors.detection.NonMaximumSuppressionPerClass(nms_thresh=0.45, epsilon=0.01)
Applies non maximum suppression per class.
Arguments
- nms_thresh: Float between [0, 1].
- epsilon: Float between [0, 1].
MergeNMSBoxWithClass
paz.processors.detection.MergeNMSBoxWithClass()
Merges box coordinates with their corresponding class
defined by class_labels
which is decided by best box geometry
by non maximum suppression (and not by the best scoring class)
into a single output.
FilterBoxes
paz.processors.detection.FilterBoxes(class_names, conf_thresh=0.5)
Filters boxes outputted from function detect
as
Box2D
messages.
Arguments
- class_names: List of class names.
- conf_thresh: Float between [0, 1].
OffsetBoxes2D
paz.processors.detection.OffsetBoxes2D(offsets)
Offsets the height and widht of a list of Boxes2D
.
Arguments
- offsets: Float between [0, 1].
CropImage
paz.processors.detection.CropImage()
Crop images using a list of box2D
.
BoxesToBoxes2D
paz.processors.detection.BoxesToBoxes2D(default_score=1.0, default_class=None)
Transforms boxes from dataset into Boxes2D
messages given no
class names and score.
Arguments
- default_score: Float, score to set.
- default_class: Str, class to set.
Properties
- default_score: Float.
- default_class: Str.
Methods
call()
BoxesWithOneHotVectorsToBoxes2D
paz.processors.detection.BoxesWithOneHotVectorsToBoxes2D(arg_to_class)
Transforms boxes from dataset into Boxes2D
messages given boxes
with scores as one hot vectors.
Arguments
- arg_to_class: List, of classes.
Properties
- arg_to_class: List.
Methods
call()
BoxesWithClassArgToBoxes2D
paz.processors.detection.BoxesWithClassArgToBoxes2D(arg_to_class, default_score=1.0)
Transforms boxes from dataset into Boxes2D
messages given boxes
with class argument.
Arguments
- default_score: Float, score to set.
- arg_to_class: List, of classes.
Properties
- default_score: Float.
- arg_to_class: List.
Methods
call()
RoundBoxes
paz.processors.detection.RoundBoxes()
Rounds the floating value coordinates of the box coordinates into integer type.
Methods
call()
RemoveClass
paz.processors.detection.RemoveClass(class_names, class_arg=None, renormalize=False)
Remove a particular class from the pipeline.
Arguments
- class_names: List, indicating given class names.
- class_arg: Int, index of the class to be removed.
- renormalize: Bool, if true scores are renormalized.
Properties
- class_arg: Int.
- renormalize: Bool
Methods
call()
ScaleBox
paz.processors.detection.ScaleBox()
Scale box coordinates of the prediction.
Arguments
- scales: Array of shape
()
, value to scale boxes.
Properties
- scales: Int.
Methods
call()
AddClassAndScoreToBoxes
paz.processors.detection.AddClassAndScoreToBoxes(classifier)
Adds class name and score to boxes.
Arguments
- classifier: Keras model.