Skip to content

Image

Processors for image transformations

[source]

CastImage

paz.processors.image.CastImage(dtype)

Cast image to given dtype.

Arguments

  • dtype: Str or np.dtype

[source]

SubtractMeanImage

paz.processors.image.SubtractMeanImage(mean)

Subtract channel-wise mean to image.

Arguments

  • mean: List of length 3, containing the channel-wise mean.

[source]

AddMeanImage

paz.processors.image.AddMeanImage(mean)

Adds channel-wise mean to image.

Arguments

  • mean: List of length 3, containing the channel-wise mean.

[source]

NormalizeImage

paz.processors.image.NormalizeImage()

Normalize image by diving all values by 255.0.


[source]

DenormalizeImage

paz.processors.image.DenormalizeImage()

Denormalize image by multiplying all values by 255.0.


[source]

LoadImage

paz.processors.image.LoadImage(num_channels=3)

Loads image.

Arguments

  • num_channels: Integer, valid integers are: 1, 3 and 4.

[source]

RandomSaturation

paz.processors.image.RandomSaturation(lower=0.3, upper=1.5)

Applies random saturation to an image in RGB space.

Arguments

  • lower: Float, lower bound for saturation factor.
  • upper: Float, upper bound for saturation factor.

[source]

RandomBrightness

paz.processors.image.RandomBrightness(delta=32)

Adjust random brightness to an image in RGB space.

Arguments

  • max_delta: Float.

[source]

RandomContrast

paz.processors.image.RandomContrast(lower=0.5, upper=1.5)

Applies random contrast to an image in RGB

Arguments

  • lower: Float, indicating the lower bound of the random number to be multiplied with the BGR/RGB image.
  • upper: Float, indicating the upper bound of the random number

to be multiplied with the BGR/RGB image.


[source]

RandomHue

paz.processors.image.RandomHue(delta=18)

Applies random hue to an image in RGB space.

Arguments

  • delta: Int, indicating the range (-delta, delta ) of possible hue values.

[source]

ResizeImages

paz.processors.image.ResizeImages(shape)

Resize list of images.

Arguments

  • size: List of two ints.

[source]

ResizeImages

paz.processors.image.ResizeImages(shape)

Resize list of images.

Arguments

  • size: List of two ints.

[source]

RandomImageBlur

paz.processors.image.RandomImageBlur(probability=0.5)

Randomizes image quality

Arguments

  • probability: Float between [0, 1]. Assigns probability of how often a random image blur is applied.

[source]

RandomGaussianBlur

paz.processors.image.RandomGaussianBlur(kernel_size=(5, 5), probability=0.5)

Randomizes image quality

Arguments

  • probability: Float between [0, 1]. Assigns probability of how often a random image blur is applied.

[source]

RandomFlipImageLeftRight

paz.processors.image.RandomFlipImageLeftRight()

Randomly flip the image left or right


[source]

ConvertColorSpace

paz.processors.image.ConvertColorSpace(flag)

Converts image to a different color space.

Arguments

  • flag: Flag found in processorsindicating transform e.g. pr.BGR2RGB

[source]

ShowImage

paz.processors.image.ShowImage(window_name='image', wait=True)

Shows image in a separate window.

Arguments

  • window_name: String. Window name.
  • wait: Boolean

[source]

ImageDataProcessor

paz.processors.image.ImageDataProcessor(generator)

Wrapper for Keras ImageDataGenerator

Arguments

  • generator: An instantiated Keras ImageDataGenerator

[source]

AlphaBlending

paz.processors.image.AlphaBlending()

Blends image to background using the image's alpha channel.


[source]

RandomImageCrop

paz.processors.image.RandomImageCrop(crop_factor=0.3, probability=0.5)

Crops randomly a rectangle from an image.

Arguments

  • crop_factor: Float between [0, 1].
  • probability: Float between [0, 1].

[source]

RandomShapeCrop

paz.processors.image.RandomShapeCrop(shape)

Randomly crops a part of an image of always the same given shape.

Arguments

  • shape: List of two ints [height, width]. Dimensions of image to be cropped.

[source]

MakeRandomPlainImage

paz.processors.image.MakeRandomPlainImage(shape)

Makes random plain image by randomly sampling an RGB color.

Arguments

  • shape: List of two ints [height, width]. Dimensions of plain image to be generated.

[source]

ConcatenateAlphaMask

paz.processors.image.ConcatenateAlphaMask()

Concatenates alpha mask to original image.


[source]

BlendRandomCroppedBackground

paz.processors.image.BlendRandomCroppedBackground(background_paths)

Blends image with a randomly cropped background.

Arguments

  • background_paths: List of strings. Each element of the list is a full-path to an image used for cropping a background.

[source]

AddOcclusion

paz.processors.image.AddOcclusion(max_radius_scale=0.5, probability=0.5)

Adds a random occlusion to image by generating random vertices and drawing a polygon.

Arguments

  • max_radius_scale: Float between [0, 1]. Value multiplied with largest image dimension to obtain the maximum radius possible of a vertex in the occlusion polygon.
  • probability: Float between [0, 1]. Assigns probability of how often an occlusion to an image is generated.

[source]

TranslateImage

paz.processors.geometric.TranslateImage(fill_color=None)

Applies a translation of image. The translation is a list of length two indicating the x, y values.

Arguments

  • fill_color: List of three integers indicating the color values e.g. [0, 0, 0]

[source]

ImageToNormalizedDeviceCoordinates

paz.processors.image.ImageToNormalizedDeviceCoordinates()

Map image value from [0, 255] -> [-1, 1].


[source]

NormalizedDeviceCoordinatesToImage

paz.processors.image.NormalizedDeviceCoordinatesToImage()

Map normalized value from [-1, 1] -> [0, 255].


[source]

ReplaceLowerThanThreshold

paz.processors.image.ReplaceLowerThanThreshold(threshold=1e-08, replacement=0.0)

[source]

GetNonZeroValues

paz.processors.image.GetNonZeroValues()

[source]

GetNonZeroArguments

paz.processors.image.GetNonZeroArguments()

[source]

FlipLeftRightImage

paz.processors.image.FlipLeftRightImage()

Flips an image left and right.

Arguments

  • image: Numpy array.

[source]

DivideStandardDeviationImage

paz.processors.image.DivideStandardDeviationImage(standard_deviation)

Divide channel-wise standard deviation to image.

Arguments

  • standard_deviation: List of length 3, containing the channel-wise standard deviation.

Properties

  • standard_deviation: List.

Methods

call()


[source]

ScaledResize

paz.processors.image.ScaledResize(image_size)

Resizes image by returning the scales to original image.

Arguments

  • image_size: Int, desired size of the model input.

Properties

  • image_size: Int.

Methods

call()


[source]

BufferImages

paz.processors.image.BufferImages(input_size, stride=25)

Buffers an image to store and process multiple images.

Arguments

  • input_size: Tuple of integers. Input shape to the model in following format: (frames, height, width, channels) e.g. (38, 96, 96, 3).
  • stride: Integer, specifies after how many images the buffer will return the all buffered images. In a scenario with an already full buffer and a stride of 10, after each 10th call the buffer will be returned. The stride must be smaller than the frames (the first argument of the input_size).

Methods

call()


[source]

PadImage

paz.processors.image.PadImage(size, mode='constant')

Pads the image to the final size size.

Arguments

  • size: Int, final size of maximum dimension of the image.
  • mode: Str, specifying the type of padding.

[source]

EqualizeHistogram

paz.processors.image.EqualizeHistogram(probability=0.5)

The Efficientpose implementation uses Histogram equalization algorithm from python Pillow library. This version of Histogram equalization produces slightly different results from that used in the paper.


[source]

InvertColors

paz.processors.image.InvertColors(probability=0.5)

Performs color / gray value inversion on a given image.

Arguments

  • probability: Float, probability of data transformation.

[source]

Posterize

paz.processors.image.Posterize(probability=0.5, num_bits=4)

Performs posterization on a given image. This is achieved by reducing the bit depth of the gray value.

Arguments

  • probability: Float, probability of data transformation.
  • num_bits: Int, final bit depth after posterization.

[source]

Solarize

paz.processors.image.Solarize(probability=0.5, threshold=225)

Performs solarization on a given image. This is achieved by inverting those pixels whose gray values lie above a certain threshold.

Arguments

  • probability: Float, probability of data transformation.
  • threshold: Int, threshold value.

[source]

SharpenImage

paz.processors.image.SharpenImage(probability=0.5)

Performs image sharpening by applying a high pass filter.

Arguments

  • probability: Float, probability of data transformation.
  • kernel: Array, the high pass filter.

[source]

Cutout

paz.processors.image.Cutout(probability=0.5, size=16, fill=128)

Cuts out a square of size size x size at a random location in the image and fills it with fill value.

Arguments

  • probability: Float, probability of data transformation.
  • size: Int, size of cutout square.
  • fill: Int, value to fill cutout with.

[source]

AddGaussianNoise

paz.processors.image.AddGaussianNoise(probability=0.5, mean=0, scale=0.2)

Adds Gaussian noise defined by mean and scale to the image.

Arguments

  • probability: Float, probability of data transformation.
  • mean: Int, mean of Gaussian noise.
  • scale: Int, percent of variance relative to 255 (max gray value of 8 bit image).